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Abstract. In this paper, we consider some well–known equilibrium problems and their duals in a
topological Hausdorff vector space X for a bifunction F defined on K × K ,where K is a convex
subset of X. Some necessary conditions are investigated, proving different results depending on the
behaviour of F on the diagonal set. The concept of proper quasimonotonicity for bifunctions is
defined, and the relationship with generalized monotonicity is investigated. The main result proves
that the condition of proper quasimonotonicity is sharp in order to solve the dual equilibrium problem
on every convex set.
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Introduction

By an equilibrium problem we understand the problem of finding

x ∈ K such that f (x, y) � 0, ∀y ∈ K,
where K is a given set and f : K × K → R is a given function. This problem
contains as special cases optimization problems, problems of Nash equilibria, com-
plementarity problems, fixed point problems, and variational inequality; it unifies
these problems in a convenient way, and many of the results obtained for one of
these problems can be extended, with suitable modifications, to general equilibrium
problems, thus obtaining wider applicability. Recently, many authors pointed out
that also problems of practical interest in optimization, economics and engineering
can be described by suitable equilibrium problems, and this explains the vast and
increasing attention devoted to this subject.

This paper adapts some recent results from variational inequality problems to
equilibrium problems. This is a very general phenomenon in this field. More spe-
cifically, we deal with necessary and sufficient conditions for the existence of
solutions to equilibrium problems. In particular we consider the following problem
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find x ∈ K :
F(x, y) � inf� F ∀y ∈ K, (EP)

and the closely related “dual”
find y ∈ K :
F(x, y) � sup

�
F ∀x ∈ K, (DEP)

where, now and in the sequel, X denotes a topological Hausdorff vector space,
K is a convex compact subset of X, F : K × K → R, and � = {(t, t), t ∈ K}.
The compactness ofK can be removed by assuming a suitable coercivity condition
(see, for instance, [2, 14]).

If F |� = 0, these problems are well known and have been intensively studied
by many authors (see [1–3, 14]). In particular, if F(x, y) = φ(y) − φ(x), EP is a
restatment of the minimization problem

minφ(x), x ∈ K,
and if F(x, y) = 〈A(x), y − x〉, where A : K → X∗ and 〈·, ·〉 is the duality pair
between X and X∗, EP is the well-known variational inequality problem (see [8]),
and DEP is the more recently studied Minty variational inequality (see [7, 9, 10]).

Let us recall the definition of gap functions for EP and DEP, respectively:

m(x) = inf
y
F (x, y), s(y) = sup

x

F (x, y).

Since the inequality m(x) � s(y) holds for every x, y ∈ K, a straightforward
computation shows that for any function F it’s true that

sup
x

inf
y
F (x, y) � inf

y
sup
x

F (x, y).

Moreover,

m(x) = inf
y
F (x, y) � F(x, x) ∀x ∈ K,

and

s(y) = sup
x

F (x, y) � F(y, y) ∀y ∈ K.

In particular, if F |� = 0, we obtain that

m(x) � 0 � s(y).

If we denote by x and y two solutions of EP and DEP, taking into account the
definitions of m and s, it’s easy to prove that the following chain of inequalities is
satisfied

inf� F � m(x) � sup
x

m(x) � inf
y
s(y) � s(y) � sup

�
F.



A NOTE ON EQUILIBRIUM PROBLEMS WITH PQM BIFUNCTIONS 69

We note that every points x and y satisfying the first and the last inequalities above
are obviously solutions of EP and DEP, respectively. Notice that in the special case
F |� = 0, since inf� F = sup� F(= 0), all the inequalities above are equalities; in
particular, if x and y are solutions of EP and DEP,

i) m(x) = 0 = s(y);
ii) (x, y) is a saddlepoint for the function F , since

F(x, y) � F(x, y)(= 0) � F(x, y) ∀x, y ∈ K;
iii) the following minimax result holds

sup
x

inf
y
F (x, y) = inf

y
sup
x

F (x, y).

It’s interesting to remark that if F |� �= 0, then, in general, some of the inequal-
ities above are strict.

EXAMPLE: Take the function F : [0, 1] × [0, 1] → R defined as follows:

F(x, y) = (x + y + 1)−1a−|x−y|,

where 1 < a < 3
√
e. Trivial computations show that

inf� F = 1

3
, sup

�
F = 1,

and

m(x) = 1

x + 2
ax−1, s(y) = 1

y + 1
a−y;

moreover, since m(x) > 1/3 and s(y) < 1 for all x, y ∈ (0, 1), any x ∈ (0, 1) is
a solution of EP and any y ∈ (0, 1) is a solution of DEP. In particular, for every
x, y ∈ (0, 1),

(inf� F =)1
3
< m(x) < sup

x

m(x) = 1

2a
= inf s(y) < s(y) < sup

�
F(= 1).

Let us notice that, in the case F |� �= 0, the existence of solutions of both EP
and DEP does not imply that a minimax result holds for the function F.

EXAMPLE: Take the function F : [0, 1] × [0, 1] → R defined as follows

F(x, y) =
{

1 x + y = 1

0 otherwise.

Trivial computations show that, for every x, y ∈ [0, 1],
inf� F = 0, sup

�
F = 1, m(x) = 0, s(y) = 1,
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therefore, any x solves EP and any y solves DEP, but we have that

inf
x

sup
y

F (x, y) > sup
y

inf
x
F (x, y).

In the case F |� = 0, the conditions m(x) = 0 and s(y) = 0 provide a complete
characterization of the solutions of EP and DEP (see [10]). In the general case,
if m(x) = inf� F for some x ∈ K, then x solves EP; if s(y) = sup� F for
some y ∈ K, then y solves DEP. The first example shows that this is no longer
a necessary condition, since there are solutions x and y of EP and DEP such that
m(x) > inf� F and s(y) < sup� F.

In this paper, we investigate a property of the bifunction F , called properly
quasimonotonicity, strictly related to existence results for DEP.

In Section 1, we state some relationships between properly quasimonotone bi-
functions and generalized monotone bifunctions.

In Section 2, the main result proves equivalent conditions, involving the prop-
erly quasimonotonicity, for the solvability of dual equilibrium problem on every
closed, convex subset of K. We also improve a result on EP in [1].

For the definitions of generalized monotone bifunctions see, for instance, [1].

1. Properly Quasimonotone Bifunctions

The definition of properly quasimonotonicity for a bifunction turns out to be very
useful when dealing with equilibrium problems.

Let F : K ×K → R;

DEFINITION 1.1. The function F is said to be properly quasimonotone (pqm)
on K × K if for every finite set A of K, and for every y ∈co(A) the following
inequality is satisfied

min
x∈A F(x, y) � 0. (1.1)

REMARK 1.1. If F is pqm, then F |� � 0; indeed, take A = {x}, for every
x ∈ K; then y = x and F(x, x) � 0.

The definition of pqm for bifunction is not new; it appears in [17], under the
name of 0-diagonally quasiconcavity, and it is used in [16] to prove a result for
the existence of solutions of a dual equilibrium problem. The name of proper
quasimonotonicity is due to Daniilidis and Hadjisavvas; in [4], they called pqm an
operator T : X → 2X

∗
satisfying, for every A = {x1, . . . , xn}, for every y ∈co(A),

∀x∗
i ∈ T (xi) : (x∗

i , y − xi) � 0, for some i.

Let us recall that a bifunction F is said to be pseudomonotone on K × K if
F(x, y) � 0 implies F(y, x) � 0, for every x, y ∈ K. The following conditions,
easy to check, provide simple sufficient criteria for the proper quasimonotonicity
of a bifunction:
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PROPOSITION 1.1. If F satisfies the assumptions
i) F(·, y) quasiconcave and F |� � 0, or
ii) F(x, ·) quasiconvex (qcx) and F pseudomonotone, with F |� = 0,

then F is pqm.

It’s interesting to investigate the relationships existing between the concept of
pqm, and those of generalized monotonicity, quasimonotonicity in particular. In the
case of an operator T : X → 2X

∗
, is was shown in [4] that if T is pqm, then it is

qm. Let us notice that, without specific assumptions on F , there is not a relationship
between pqm and qm, as the following examples put in evidence:

EXAMPLES: The function F : [0, 1] × [0, 1] → R defined as follows

F(x, y) =
{

1 if y = 0, x > 0, or x = 0, y > 0

0 otherwise,

is pqm, but is not qm; the function F : [0, 1] × [0, 1] → R defined as follows

F(x, y) =
{

1 if x + y < 1, y > x, or x + y > 1, y < x

0 otherwise,

is qm, but is not pqm.
To state some relationships between the two concepts, we need some regularity

assumptions. We recall that a function f : K → R (K convex subset of X) is
said to be semistrictly quasiconcave (s.s.qcv) on K if for every x1, x2 ∈ K such
that f (x2) > f (x1), the inequality f ((1 − λ)x1 + λx2) > f (x1) holds for every
λ ∈ (0, 1).

A first result is the following

PROPOSITION 1.2. Assume that F(x, ·) is radially lower semicontinuous (r. lsc)
and s.s. qcv on K, and F is pqm, with F |� = 0. Then, F is qm.

Proof. Let x, y ∈ K such that F(x, y) > 0, and assume by absurd that F(y, x) >
0. Denote by yt the point (1 − t)y + tx. By the r. lsc we have that (0 <)F(x, y) �
lim inft→0+ F(x, yt ); in particular, for some t ∈ (0, 1), F (x, yt ) > 0. From the
pqm, then, F(y, yt ) � 0, and from the s.s. qcv il follows that (0 �)F (y, yt ) >
min{F(y, x), F (y, y)} = 0, a contradiction.

Another result, useful when F(x, y) = h(x, y − x) and h is a generalized
derivative, is provided by the following

PROPOSITION 1.3. If F is pqm, and is ‘positively homogeneous’, then F is qm
(positively homogeneous means that there exists p > 0 such that

λpF(x, y) = F(x, x + λ(y − x))

for every λ > 0).
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Proof. Indeed, let F(x, y) > 0, and consider any point yt = (1 − t)x + ty,
t ∈ (0, 1). By the positive homogeneity of F , since F(x, yt ) = tpF (x, y), then
F(x, yt ) > 0. By the assumption of pqm, since yt ∈ co{x, y}, we obtain that
F(y, yt ) � 0, that is F(y, x) � 0, thereby proving the thesis.

REMARK 1.2. In Propositions 1.2 and 1.3 the pqm property can be weakened by
requiring that F is pqm ‘along lines’, that is for every x1, x2 ∈ K, and for every
y in the segment [x1, x2], the condition F(x1, y) > 0 implies F(x2, y) � 0. This
condition is weaker than the pqm condition, as is proved by the following:

EXAMPLE: Let F : R2 × R2 → R be the function defined as follows

F(x, y) =




1 − y1 − y2 if x = (0, 1)

y1 if x = (0, 0)

y2 if x = (1, 0)

0 otherwise.

This function is not pqm (indeed, taking x1 = (0, 1), x2 = (0, 0), x3 = (1, 0), for
any y in the relative interior of co(x1, x2, x3), we have that F(xi, y) > 0), but it
can be easily checked that F is pqm along lines.

It is proved in [4] that if φ : K → R ∪ {+∞} is lsc on K, there is equivalence
between qm and pqm of ∂φ, where ∂ denotes the Clarke–Rockafellar subdiffer-
ential. We can prove similar results for generalized derivatives of a radially lsc
function. In particular, denote by h(x, d) the lower (upper) Dini derivative of φ
at x along the direction d. Let us recall (see [11]) that if φ is radially lsc, then
φ is quasiconvex if and only if the lower (upper) Dini derivative D+φ(x, y − x)

(D+φ(x, y − x)) is qm as a function of (x, y). Moreover, if φ is quasiconvex, then

φ(y) � φ(x) �⇒D+φ(x, y − x) � 0,
(1.2)

φ(y) � φ(x) �⇒D+φ(x, y − x) � 0.

We have the following:

PROPOSITION 1.4. Suppose that φ is radially lower semicontinuous on the con-
vex setK. Then h(x, y−x) = D+φ(x, y−x) (orD+φ(x, y−x)) is quasimonotone
if and only if it is properly quasimonotone.

Proof. The ‘if’ part follows from Proposition 1.3. Let us show the ‘only if’ part.
By absurd, suppose that there exists x1, . . . , xn and ỹ ∈ co(x1, . . . , xn) such that

h(xi, ỹ − xi) > 0, ∀i = 1, 2, . . . , n.

From (1.2), f (xi) < f (ỹ). In particular, none of the points xi can be a maximum
point for f on the convex set co(x1, . . . , xn). But this contradicts the well known
property of vertex–maximum of quasiconvex function over a polyedron (see, for
instance, [13]). Therefore, h is pqm.
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Following the definitions of generalized convexity with respect to a bifunction
given in [11], Proposition 1.4 can be extended in a natural way to more general
settings.

2. Equilibrium problems for pqm bifunctions

Let us go back to the dual equilibrium problem in order to motivate the interest in
the pqm property of a bifunction. Given the bifunction F : K × K → R, denote
by G : K → 2K the set-valued map defined by

G(x) = {y ∈ K : F(x, y) � sup
�
F }.

Since the set ∩x∈KG(x) is the set of the solutions of DEP, any results about the
existence of solutions of DEP can be restated as a result of nonemptiness of the
intersection above. A useful tool to investigate existence results of equilibrium
problems is the Ky Fan lemma, involving the KKM property of multivalued maps.

DEFINITION 2.1. Let D be a nonempty subset of X. A function � : D → 2D is
called KKM if for any x1, x2, . . . , xn ∈ D and for any y ∈ co(x1, x2, . . . , xn) one
has y ∈ ∪i�(xi).
LEMMA 2.1 (Ky Fan). Let D be a nonempty subset of X, and � : D → 2D be a
KKM function. Assume that �(y) is closed for each y ∈ D, and �(y0) is compact
for some y0 ∈ D. Then ∩y∈D�(y) �= ∅.

It turns out that the pqm property of F is the translation of the KKM property
of the map G previously defined. This explains the interest in the definition.

The following proposition provides a sufficient condition to solve DEP.

PROPOSITION 2.1. Let F : K×K → R be a function lsc in the second variable,
and such that F − sup� F is pqm. Then ∩x∈KG(x) �= ∅. If F is quasiconvex in the
second variable, then the set of solutions is convex, and if sup� F − F is strictly
pseudomonotone, then ∩x∈KG(x) is a singleton.

Proof. The first part of the proof follows as a special case from th. 2.2 in [16].
To show uniqueness of the solution, let x, x̂ ∈ ∩x∈KG(x), x �= x̂. Both of them
are solutions of DEP, therefore

F(x, x̂) � sup
�
F, F(x̂, x) � sup

�
F. (2.3)

But, from the strict pseudomonotonicity,

F(x, x̂) � sup
�
F �⇒ F(x̂, x) > sup

�
F,

contradicting (2.1). Finally, the convexity of the solution set given by ∩x∈KG(x)
follows immediately from the convexity of each of G(x).
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To state the result proving that the pqm property cannot be weakened in order
to solve DEP, we need the following topological lemma:

LEMMA 2.2 ([15], Corollary 6.5.1). Let C be a convex subset of Rn, and let M
be an affine set wich contains a point of ri C. Then

ri (M ∩ C) = M ∩ ri C, cl (M ∩ C) = M ∩ cl C.

(ri C denotes the relative interior of C and cl C the closure of C.)

The following theorem essentially states that the condition of proper quasi-
monotonicity is quite sharp in solving dual equilibrium problems. Before stating
this main result, we wish to recall that an analogue result was proved in the different
framework of the Minty variational inequality for multivalued maps in [9]. It might
be interesting to draw the attention to that both John’s and the present result are of
Martos type, in the following sense: φ is quasiconvex on a convex set C if and only
if it takes a vertex–maximum over any compact polyedral subset of C; indeed, if
we put F(x, y) = φ(y)− φ(x), then F is pqm if and only if φ is quasiconvex.

THEOREM 2.1 Let F : K × K → R be a function lsc and qcx in the second
variable; if G(x) denotes the set {y : F(x, y) � sup� F }, then the following
conditions are equivalent:

i) F − sup� F is pqm;
ii) for any finite set A ⊆ K there exists y ∈ co(A) such that y ∈ ∩x∈AG(x);
iii) DEP has a solution on every compact convex subset of K.
Proof. We prove the equivalence between i), ii) and iii) by showing that

i) �⇒ ii) �⇒ iii) �⇒ i).

i) �⇒ ii): let A be a finite subset of K, and denote by C the closed convex
set co(A). Consider the function F defined on C × C; since, by i), F − sup� F
is pqm on C × C, and lsc in the second component, then, by Proposition 2.1,
∩x∈C(G(x) ∩ C) �= ∅. In particular, there exists x ∈ C such that x ∈ ∩x∈AG(x),
thereby proving ii);

ii) �⇒ iii): consider a convex compact subset C of K. We shall prove that

∩x∈C (G(x) ∩ C) �= ∅.
Take A = {x1, x2, . . . , xn} ⊆ C; from ii), there exists x ∈co(A) ⊆ C such that
x ∈ ∩n1G(xi). This implies that for any {x1, x2, . . . , xn} ⊆ C the set ∩n1(G(xi)∩C)
is nonempty. Since G(x) ∩ C is compact for every x ∈ C, then, by a well known
result, ∩x∈C(G(x) ∩ C) �= ∅, thereby proving iii);

iii) �⇒ i): we shall prove this implication by induction on n. Indeed, since
F(x, x) � sup� F for every x ∈ K, i) holds for n = 1. Let us assume that i)
holds for any n − 1 points in K, and consider the finite set A = {x1, x2, . . . , xn}.
Take y ∈ C =co(A). If y = ∑m

1 λij xij with m < n, then, by the hypothesis of
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induction, since y belongs to a simplex of dimension less than n, there exists ij
such that F(xij , y) � sup� F. Otherwise, suppose that λi �= 0 for every i; in this
case, y is an interior point of the simplex generated by {x1, x2, . . . , xn}. Denote by
z a solution of DEP on the set C, and assume that z �= y (if z = y, then i) trivially
holds). Denote by aff (z, y) the affine space (line) containing z and y. Since y ∈
ri C, then Lemma 2.2 can be applied to the sets C and M = aff (z, y) considered
as subsets of the finite–dimensional space generated by {x1, x2, . . . , xn}. It follows
that there exists w ∈ aff (z, y) ∩ ∂C such that w �= z, w = ∑m

1 λij xij (m < n)
and y ∈ [z,w]. Since w ∈ co(xi1 , xi2 , . . . , xim), by the hypothesis of induction
there exists ik such that F(xik , w) � sup� F. Moreover, F(xi, z) � sup� F (i =
1, 2, . . . , n). Therefore, by the convexity of the set G(xik ), since w, z ∈ G(xik ),

the whole segment [z,w] belongs to this set; in particular, y ∈ G(xik ), thereby
showing that i) holds for a set of n points.

Under suitable conditions, the existence of solutions of DEP implies the solv-
ability of EP. We need the following

DEFINITION 2.2. A real function f defined on a convex subset K of X is said to
be hemicontinuous if limt→0+ f (tx + (1 − t)y) = f (y), for each x, y ∈ K.

PROPOSITION 2.2. Let F : K × K → R be a pqm function with F |� = 0,
semistrictly (ss) qcx and lsc in the second variable, and hemicontinuous in the first
one. Then EP has a solution.

Proof. From Proposition 2.1, there exists x solution of DEP. We prove that x is
a solution of EP. Take any x ∈ K, and define xt = (1 − t)x + tx for t ∈ [0, 1].
Since F is qcx in the second component,

0 = F(xt , xt ) � max{F(xt , x), F (xt , x)}.
If F(xt , x) < F(xt , x), then

F(xt , x) � F(xt , xt ) � F(xt , x),

so that F(xt , xt ) = F(xt , x), contradicting the ss qcx. Then

F(xt , x) � F(xt , xt ) � F(xt , x), ∀t ∈ [0, 1].
Taking t → 0+, by the hemicontinuity we have F(x, x) � F(x, x) = 0, thereby
x solves EP.

To conclude, we show that the assumptions of Proposition 2.2 are weaker than
those in [1]. To this aim, let us consider the following:

COUNTEREXAMPLE: Consider K = [0, 1] and the function F : K ×K → R
defined as follows

F(x, y) =
{

2x − 2y − 1 if 1/2 � x � 1, 0 � y � x − 1/2

0 otherwise.
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This function is trivially not pseudomonotone, but it is pqm, quasiconvex and
continuous on [0, 1] × [0, 1].
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